首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   41篇
电工技术   3篇
化学工业   199篇
金属工艺   3篇
机械仪表   11篇
建筑科学   22篇
矿业工程   1篇
能源动力   14篇
轻工业   84篇
水利工程   6篇
无线电   17篇
一般工业技术   84篇
冶金工业   7篇
原子能技术   2篇
自动化技术   45篇
  2024年   1篇
  2023年   16篇
  2022年   10篇
  2021年   107篇
  2020年   32篇
  2019年   25篇
  2018年   32篇
  2017年   22篇
  2016年   24篇
  2015年   21篇
  2014年   23篇
  2013年   33篇
  2012年   20篇
  2011年   31篇
  2010年   17篇
  2009年   19篇
  2008年   15篇
  2007年   8篇
  2006年   11篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有498条查询结果,搜索用时 15 毫秒
101.
In this paper, the debonding strength of axially loaded double shear lap specimens between steel plates and carbon fibre reinforced plastic plates is investigated from the analytical, numerical and experimental point of view. Two steel plates were joined together by two carbon fibre reinforced plastic (CFRP) plates and epoxy adhesive in order to realize double shear lap specimens of different length. Failure of the steel-adhesive interface was identified as the dominant failure mode and fracture mechanics and stress based approach are presented in order to estimate the relevant failure load. A good agreement between the analytical-numerical results and experimental data is achieved.  相似文献   
102.
Properties and performances of innovative coated tools for turning inconel   总被引:3,自引:2,他引:1  
Three innovative nanostructured coatings have been developed to be applied on cutting tools for continuous cutting of nickel-based super-alloys, in Minimum Quantity Lubrication (MQL) or dry conditions.The coatings, TiN+AlTiN, TiN+AlTiN+MoS2 and CrN+CrN:C+C, were applied by PVD techniques on WC-Co inserts, developing nanostructured layers, characterised by superior performances, as confirmed both by laboratory tests and machining experiments.Coatings surface qualification included SEM observations with EDS analysis, ball erosion test, nanoindentation and scratch tests, classic tribological evaluation by ball-on-disc set-up, surface texture analysis.Results were analysed in light of the outcome of machining experiments performed mainly in dry and MQL turning of Inconel 718. Ball-on-disc and scratch tests, as well as machining experiments, agreed in classifying the coatings in the following decreasing performance order: TiN+AlTiN+MoS2, followed by TiN+AlTiN, and by CrN+CrN:C+C.  相似文献   
103.
104.
The use of assisted reproductive technologies (ART) still requires strategies through which to maximize individual fertility chances. In vitro folliculogenesis (ivF) may represent a valid option to convey the large source of immature oocytes in ART. Several efforts have been made to set up ivF cultural protocols in medium-sized mammals, starting with the identification of the most suitable gonadotropic stimulus. In this study, Equine Chorionic Gonadotropin (eCG) is proposed as an alternative to Follicle Stimulating Hormone (FSH) based on its long superovulation use, trans-species validation, long half-life, and low costs. The use of 3D ivF on single-ovine preantral (PA) follicles allowed us to compare the hormonal effects and to validate their influence under two different cultural conditions. The use of eCG helped to stimulate the in vitro growth of ovine PA follicles by maximizing its influence under FBS-free medium. Higher performance of follicular growth, antrum formation, steroidogenic activity and gap junction marker expression were recorded. In addition, eCG, promoted a positive effect on the germinal compartment, leading to a higher incidence of meiotic competent oocytes. These findings should help to widen the use of eCG to ivF as a valid and largely available hormonal support enabling a synchronized in vitro follicle and oocyte development.  相似文献   
105.
Osteosarcoma (OS) is a skeletal tumor affecting mainly children and adolescents. The presence of distance metastasis is frequent and it is localized preferentially to the lung, representing the main reason for death among patients. The therapeutic approaches are based on surgery and chemotherapeutics. However, the drug resistance and the side effects associated with the chemotherapy require the identification of new therapeutic approaches. The understanding of the complex biological scenario of the osteosarcoma will open the way for the identification of new targets for its treatment. Recently, a great interest of scientific community is for extracellular vesicles (EVs), that are released in the tumor microenvironment and are important regulators of tumor proliferation and the metastatic process. At the same time, circulating extracellular vesicles can be exploited as diagnostic and prognostic biomarkers, and they can be loaded with drugs as a new therapeutic approach for osteosarcoma patients. Thus, the characterization of OS-related EVs could represent a way to convert these vesicles from antagonists for human health into therapeutic and/or diagnostic agents.  相似文献   
106.
Thanks to their reduced size, great surface area, and capacity to interact with cells and tissues, nanomaterials present some attractive biological and chemical characteristics with potential uses in the field of biomedical applications. In this context, graphene and its chemical derivatives have been extensively used in many biomedical research areas from drug delivery to bioelectronics and tissue engineering. Graphene-based nanomaterials show excellent optical, mechanical, and biological properties. They can be used as a substrate in the field of tissue engineering due to their conductivity, allowing to study, and educate neural connections, and guide neural growth and differentiation; thus, graphene-based nanomaterials represent an emerging aspect in regenerative medicine. Moreover, there is now an urgent need to develop multifunctional and functionalized nanomaterials able to arrive at neuronal cells through the blood-brain barrier, to manage a specific drug delivery system. In this review, we will focus on the recent applications of graphene-based nanomaterials in vitro and in vivo, also combining graphene with other smart materials to achieve the best benefits in the fields of nervous tissue engineering and neural regenerative medicine. We will then highlight the potential use of these graphene-based materials to construct graphene 3D scaffolds able to stimulate neural growth and regeneration in vivo for clinical applications.  相似文献   
107.
In this work, bio-based products composed of blends of a star-shaped poly(d ,l -lactide) (star-PDLLA) and a conventional linear poly(l -lactide) (linear-PLLA) are produced by typical large-scale manufacturing techniques for thermoplastic blends. In the first case, the two polymers are blended through melt extrusion, producing pellets that are subsequently compression-molded into the final bio-based polymer films. Alternatively, the star/linear poly(lactide) (PLA) materials are developed by direct blending through injection molding, a process that generally applies after a preblending extrusion step to ensure proper mixing. Thermomechanical degradation induced by the different processes is evaluated, and the performances of the final star/linear PLA products are thoroughly compared. The effect of the short-branched, amorphous, star polymeric component on thermal, mechanical, and rheological properties of the conventional PLLA is comprehensively investigated, revealing that the star-PDLLA incorporation promotes the formation of a more flexible and tougher material with reduced capability of crystallization. Most importantly, star-PDLLA decreases the melt viscosity of the final material, while increasing the shear-thinning behavior, hence facilitating melt flow during manufacturing. Such properties lead to enhanced material ductility and processability, with respect to typically brittle and viscous conventional PLLA-based materials. Moreover, the tuning of final material performances can be achieved by simply varying the star-PDLLA content.  相似文献   
108.
Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.  相似文献   
109.
ABSTRACT

The present paper presents the development of a thermal energy storage system for application with non-concentrating solar plants using phase change materials (PCMs). The outcomes of an experimental analysis on commercial PCMs and laboratory-grade chemical compounds suitable for latent heat storages in a temperature range of 80–100°C is presented, with main focus on to the enthalpy and the cycle stability of the materials. Particularly, a first evaluation of possible degradation mechanisms in hydrated salts was investigated by means of nuclear magnetic resonance spectroscopy. The best performing materials have been implemented in a numerical model, based on the enthalpy method, used for the design of a thermal storage system. The configuration of the system, starting from a simple shell-and-tube layout, has been optimized by inserting asymmetric fin-and-tubes and the results with two selected materials have been compared. The analysis has shown that the most promising materials are the commercial ones belonging to the classes of paraffinic materials and hydrated salts and that, with the designed configuration, it is possible to store up to 200 kJ/m3 and get a peak power during discharge of about 1.5 kW.  相似文献   
110.
The aim of this work was to discuss the suitability of the joining process called “RM-Wrap” (RM = Refractory Metals, ie, Mo, Nb, Ta, Zr) as a pressure-less and tailorable technique to join several different ceramics such as SiC, alumina, and mullite (3Al2O3.2SiO2). In the RM-Wrap joining technique the refractory metal foil is used as a wrap containing one or more silicon foils. It is performed at 1450°C, under flowing argon, and the resulting joining materials are in situ formed composites made of refractory metal disilicides (MoSi2, NbSi2, TaSi2, or ZrSi2) embedded in a silicon-rich matrix; their coefficient of thermal expansion has been calculated and the Laser Flash Method was used to measure the thermal diffusivity of one of them (MoSi2/Si) in 25°C-1000°C range, then to calculate its thermal conductivity. All the obtained joints are uniform, continuous, and crack free. Some preliminary oxidation tests were carried out on all joints at 1100°C, 6 hours in air, giving unchanged morphology of the interface and the joining materials itself; the joint strength of RM-Wrap joined SiC was measured at room temperature using three different mechanical tests: (a) single lap (SL), (b) single lap off-set (SLO) and (c) torsion on hourglass-shaped samples (THG) (on Mo-wrap joined SiC).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号